Multidimensional Random Sampling for Fourier Transform Estimation

نویسندگان

  • Mustafa Al-Ani
  • Albert Einstein
  • WILLIAM SHAKESPEARE
  • Andrzej Tarczynski
چکیده

......................................................................................................................... I Acknowledgments .......................................................................................................... II Author Declaration ........................................................................................................ IV Associated Publications .................................................................................................. V Glossary .......................................................................................................................... IX Chapter 1: Introduction ................................................................................................ 1 1.1 NMR Spectroscopy ................................................................................. 2 1.2 The Adopted Sampling Methodology .................................................... 6 1.3 Summary of the Contributions .............................................................. 12 1.4 Thesis Outline ........................................................................................ 14 Chapter 2: Sampling Techniques and Fourier Analysis ............................................ 15 2.1 Preliminary on Multidimensional Sampling and Fourier Analysis ......... 19 2.2 Nonuniform Sampling Techniques and Processing Algorithms .............. 25 2.2.1 Least-Square Spectral Analysis ................................................... 25 2.2.2 Compressive Sensing ................................................................... 26 2.2.3 Periodic Nonuniform Sampling ................................................... 28

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Sensing-based Mrireconstruction in Fractional Fourier Domain

Compressive sensing is an emerging field in digital signal processing. It introduce a new technique to image reconstruction from less amount of data. This methodology reduces imaging time in MRI. Compressive sensing exploit the sparsity of the signal. In this paper Fractional Fourier is used as sparsifying transform and signal sampled by random sampling . Run length encoding is applied to code ...

متن کامل

Sampling reconstruction of N-dimensional bandlimited images after multilinear filtering in fractional Fourier domain

This paper addresses the problem of multidimensional signal reconstruction from generalized samples in fractional Fourier domain including the deterministic case and the stochastic case. The generalized sampling expansion is investigated for the case where the fractional bandlimited input depends on N real variable, i.e., f t ð Þ 1⁄4 f t1 , ,tN ð Þ and is used as a common input to a parallel ba...

متن کامل

Theoretical and Experimental Estimation of Hypercomplex Discrete Fourier Transform Parallelization Efficiency

The methods of fast parallel calculation of multidimensional hypercomplex discrete Fourier transform (HDFT) are discussed. The theoretical and experimental estimation of parallelization efficiency is given. It is shown that proposed method has very high efficiency (up to 90%).

متن کامل

An Efficient Multivariate Multidimensional Random Field Generator Using the Fast Fourier Transform

The direct Fast Fourier Transform method is very attractive for its simplicity and speed in generating multidimensional random fields. This thesis describes an efficient FFT method for generating multivariate multidimensional random fields based on the alternative spectral representation. Generation of a multivariate random field is simplified by the use of the spectral factorization function. ...

متن کامل

Compressive Fourier Transform Spectroscopy

We describe an approach based on compressive-sampling which allows for a considerable reduction in the acquisition time in Fourier-transform spectroscopy. In this approach, an N-point Fourier spectrum is resolved from much less than N time-domain measurements using a compressive-sensing reconstruction algorithm. We demonstrate the technique by resolving sparse vibrational spectra using <25% of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014